Adenosinergic protection of dopaminergic and GABAergic neurons against mitochondrial inhibition through receptors located in the substantia nigra and striatum, respectively.

نویسندگان

  • Peter D Alfinito
  • Sheng-Ping Wang
  • Lawrence Manzino
  • Sonia Rijhsinghani
  • Gail D Zeevalk
  • Patricia K Sonsalla
چکیده

Mitochondrial dysfunction may contribute to dopaminergic (DAergic) cell death in Parkinson's disease and GABAergic cell death in Huntington's disease. In the present work, we tested whether blocking A1 receptors could enhance the damage to DAergic and GABAergic neurons caused by mitochondrial inhibition, and whether blocking A2a receptors could protect against damage in this model. Animals received an intraperitoneal injection of 8-cyclopentyl-1,3-dipropylxanthine (CPX) (A1 antagonist) or 3,7-dimethyl-1-propargylxanthine (DMPX) (A2a antagonist) 30 min before intrastriatal infusion of malonate (mitochondrial complex II inhibitor). Damage was assessed 1 week later by measuring striatal dopamine, tyrosine hydroxylase (TH), and GABA content. In mice and rats, malonate-induced depletion of striatal dopamine, TH, or GABA was potentiated by pretreatment with 1 mg/kg CPX and attenuated by pretreatment with 5 mg/kg DMPX. To determine the location of the A1 and A2a receptors mediating these effects, CPX or DMPX was infused directly into the striatum or substantia nigra of rats 30 min before intrastriatal infusion of malonate. When infused into the striatum, CPX (20 ng) potentiated, whereas DMPX (50 ng) prevented malonate-induced GABA loss, but up to 100 ng of CPX or 500 ng of DMPX did not alter malonate-induced striatal dopamine loss. Intranigral infusion of CPX (100 ng) or DMPX (500 ng), however, did exacerbate and protect, respectively, against malonate-induced striatal dopamine loss. Thus, A1 receptor blockade enhances and A2a receptor blockade protects against damage to DAergic and GABAergic neurons caused by mitochondrial inhibition. Interestingly, these effects are mediated by A1 and A2a receptors located in the substantia nigra for DAergic neurons and in the striatum for GABAergic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA, Receptor-Mediated Inhibition of Rat Substantia Nigra Dopaminergic Neurons by Pars Reticulata Projection Neurons

Evidence from electrophysiological studies has suggested an inhibitory interaction between GABAergic neurons in substantia nigra pars reticulata and dopaminergic neurons in pars compacta. However, that this inhibitory interaction is due to a projection from pars reticulata to pars compacta has never been demonstrated directly, nor has the GABAergic neuron that mediates the interaction been iden...

متن کامل

GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons.

Evidence from electrophysiological studies has suggested an inhibitory interaction between GABAergic neurons in substantia nigra pars reticulata and dopaminergic neurons in pars compacta. However, that this inhibitory interaction is due to a projection from pars reticulata to pars compacta has never been demonstrated directly, nor has the GABAergic neuron that mediates the interaction been iden...

متن کامل

Subthalamic stimulation-induced synaptic responses in substantia nigra pars compacta dopaminergic neurons in vitro.

The subthalamic nucleus (STN) is one of the principal sources of excitatory glutamatergic input to dopaminergic neurons of the substantia nigra, yet stimulation of the STN produces both excitatory and inhibitory effects on nigral dopaminergic neurons recorded extracellularly in vivo. The present experiments were designed to determine the sources of the excitatory and inhibitory effects. Synapti...

متن کامل

GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo.

Most in vivo electrophysiological studies of substantia nigra have used rats. With the recent proliferation of the use of mice for in vitro neurophysiological studies because of the availability of various genetically modified strains to identify the roles of various channels and proteins in neuronal function, it is crucial to obtain data on in vivo responses in mice to verify that the in vitro...

متن کامل

Trehalose Neuroprotective Effects on the Substantia Nigra Dopaminergic Cells by Activating Autophagy and Non-canonical Nrf2 Pathways

Trehalose, as a natural disaccharide, is known as an autophagy inducer. The neuroprotectiveeffects of trehalose in the rat model of Parkinson′s disease were the aim of the present study.Parkinson′s disease model was induced by injecting 6-hydroxydopamine (6-OHDA) in thestriatum of male Wistar rats. Apomorphine-induced behavior and substantia nigra neuronalcounts were app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 34  شماره 

صفحات  -

تاریخ انتشار 2003